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1 INTRODUCTION

There are multiple senses of complexity. For instance, something can be consid-
ered complex because it is complicated or intricate (think of an engine or a watch
with many moving parts and interrelated systems). However, systems that have a
complicated set of interacting parts may actually exhibit relatively simple behavior
(this is the case for engines). In contrast, the notion of complexity of interest in
“complexity studies” centers on systems whose behavior is nonlinear and typically
exhibits self-organization and collective effects. Such behavior appears to be any-
thing but simple (see sec. 2.5), yet it is the case that systems with relatively few
interacting components can exhibit this kind of intricate behavior. For instance,
phase changes in Ising models and other systems with large numbers of compo-
nents are examples of systems exhibiting complex self-organizing behavior. But
even three-particle billiard-ball-like systems can exhibit the requisite complex be-
havior. On the other hand, many n-body systems, where n is large, do not exhibit
complexity (e.g., Brownian motion of molecules) because the interactions among
the constituents are not of the right type. An important feature of the systems of
interest in complexity studies is that the interactions of the system components be
nonlinear. Still, characterizing the resulting behavior, and the complex systems
which exhibit it, is one of the major challenges facing scientists studying complex-
ity and calls for the development of new concepts and techniques (e.g., [Badii and
Politi, 1997]).

A number of metaphysical and epistemological issues are raised by the investi-
gation and behavior of complex systems. Before treating some of these issues, a
characterization of nonlinear dynamics and complexity is given. Along with this
background, some folklore about chaos and complexity will be discussed. Although
some claim that chaos is ubiquitous and many take the signal feature of chaos to
be exponential growth in uncertainty (parameterized by Lyapunov exponents, see
sec. 2.4), these examples of folklore turn out to be misleading. They give rise to
rather surprising further folklore that chaos and complexity spell the end of pre-
dictability and determinism. But when we see that Lyapunov exponents, at least
in their global form, and measures for exponential divergence of trajectories only
apply to infinitesimal quantities in the infinite time limit, this further folklore also
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turns out to be misleading. Instead, the loss of linear superposition in nonlinear
systems is one of the crucial features of complex systems. This latter feature is
related to the fact that complex behavior is not limited to large multi-component
systems, but can arise in fairly simple systems as well.

The impact of nonlinearity on predictability and determinism will be discussed
including, briefly, the potential impact of quantum mechanics. Some have argued
that chaos and complexity lead to radical revisions in our conception of determin-
ism, namely that determinism is a layered concept (e.g., [Kellert, 1993]), but such
arguments turn on misunderstandings of determinism and predictability and their
subtle relations in the context of nonlinear dynamics. When the previously men-
tioned folklore is cleared away, the relationship among determinism, predictability
and nonlinearity can be seen more clearly, but still contains some subtle features.
Moreover, the lack of linear superposition in complex systems also has implica-
tions for confirmation, causation, reduction and emergence, and natural laws in
nonlinear dynamics all of which raise important questions for the application of
complex nonlinear models to actual-world problems.

2 NONLINEAR DYNAMICS: FOLKLORE AND SUBTLETIES

I will begin with a distinction that is immediately relevant to physical descriptions
of states and properties known as the ontic/epistemic distinction tracing back
at least to Erhard Scheibe [1964] and subsequently elaborated by others [Primas,
1990; 1994; Atmanspacher, 1994; 2002; d’Espagnat, 1994; Bishop, 2002). Roughly,
ontic states and properties are features of physical systems as they are “when
nobody is looking,” whereas epistemic states and properties refer to features of
physical systems as accessed empirically. An important special case of ontic states
and properties are those that are deterministic and describable in terms of points
in an appropriate state space (see secs. 2.3 and 3.2 below); whereas an important
special case of epistemic states and properties are those that are describable in
terms of probability distributions (or density operators) on some appropriate state
space. The ontic/epistemic distinction helps eliminate of confusions which arise in
the discussions of nonlinear dynamics and complexity as we will see.

2.1 Dynamical systems

Complexity and chaos are primarily understood as mathematical behaviors of
dynamical systems. Dynamical systems are deterministic mathematical models,
where time can be either a continuous or a discrete variable (a simple example
would be the equation describing a pendulum swinging in a grandfather clock).
Such models may be studied as purely mathematical objects or may be used to
describe a target system (some kind of physical, ecological or financial system,
say). Both qualitative and quantitative properties of such models are of interest
to scientists.
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The equations of a dynamical system are often referred to as dynamical or evo-
lution equations describing the change in time of variables taken to adequately
describe the target system. A complete specification of the initial state of such
equations is referred to as the initial conditions for the model, while a characteriza-
tion of the boundaries for the model domain are known as the boundary conditions.
A simple example of a dynamical system would be the equations modeling a partic-
ular chemical reaction, where a set of equations relates the temperature, pressure,
amounts of the various compounds and their reaction rates. The boundary con-
dition might be that the container walls are maintained at a fixed temperature.
The initial conditions would be the starting concentrations of the chemical com-
pounds. The dynamical system would then be taken to describe the behavior of
the chemical mixture over time.

2.2 Nonlinear dynamics and linear superposition

The dynamical systems of interest in complexity studies are nonlinear. A dynam-
ical system is characterized as linear or nonlinear depending on the nature of the
dynamical equations describing the target system. Consider a differential equation
system dx/dt = Fx , where the set of variables x = x1, x2, ..., xn might represent
positions, momenta, chemical concentration or other key features of the target
system. Suppose that x 1(t) and x 2(t) are solutions of our equation system. If the
system of equations is linear, it is easy to show that x 3(t) = ax 1(t) + bx 2(t) is
also a solution, where a and b are constants. This is known as the principle of
linear superposition.

If the principle of linear superposition holds, then, roughly, a system behaves
such that any multiplicative change in a variable, by a factor α say, implies a
multiplicative or proportional change of its output by α. For example, if you
start with your television at low volume and turn the volume control up one
unit, the volume increases one unit. If you now turn the control up two units, the
volume increases two units. These are examples of linear responses. In a nonlinear
system, linear superposition fails and a system need not change proportionally to
the change in a variable. If you turn your volume control up two units and the
volume increases tenfold, this would be an example of a nonlinear response.

2.3 State space and the faithful model assumption

Dynamical systems involve a state space, an abstract mathematical space of points
where each point represents a possible state of the system. An instantaneous state
is taken to be characterized by the instantaneous values of the variables considered
crucial for a complete description of the state. When the state of the system is
fully characterized by position and momentum variables (often symbolized as q
and p, respectively), the resulting space is often called a phase space. A model
can be studied in state space by following its trajectory, which is a history of the
model’s behavior in terms of its state transitions from the initial state to some
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chosen final state (Figure. 1). The evolution equations govern the path — the
history of state transitions — of the system in state space.

There are some little noticed yet crucial assumptions being made in this account
of dynamical systems and state spaces. Namely, that the actual state of a target
system is accurately characterized by the values of the crucial state space variables
and that a physical state corresponds via these values to a point in state space.
These assumptions allow us to develop mathematical models for the evolution of
these points in state space and to consider such models as representing the target
systems of interest (perhaps through an isomorphism or some more complicated
relation). In other words, we assume that our mathematical models are faithful
representations of target systems and that the state spaces employed faithfully
represent the space of actual possibilities of target systems. This package of as-
sumptions is known as the faithful model assumption (e.g., [Bishop, 2005a; 2006]).
In its idealized limit — the perfect model scenario [Judd and Smith, 2001]— it
can license the (perhaps sloppy) slide between model talk and system talk (i.e.,
whatever is true of the model is also true of the target system and vice versa).

2.4 Sensitive dependence and Lyapunov exponents

One striking feature of chaos and complexity is their sensitive dependence on ini-
tial conditions: the property of a dynamical system to show possibly extremely
different behavior with only the slightest of changes in initial conditions. A very
popular measure of this sensitive dependence involves the explosive growth of the
smallest uncertainties in the initial conditions of a nonlinear system. This explo-
sive growth is often defined as an exponential parameterized by the largest global
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Lyapunov exponent. These exponents arise naturally out of linear stability analysis
of the trajectories of nonlinear evolution equations in a suitable state space. The
infinite time limit plays an important role in this analysis, indicating that global
Lyapunov exponents represent time-averaged quantities so that transient behav-
ior has decayed. The existence of this limit is guaranteed by Oseledec’s [1969]
multiplicative ergodic theorem, which holds under mild conditions.

Imagine a small ball of points in state space around the initial conditions x (0).
For any number δ > 0 and for every slightly different initial condition y(0) in this
small ball, exponential growth means the initial uncertainty, |x (0) - y(0)| < δ,
will evolve such that |x (t) - y(t)| ≈ |x (0) - y(0)|eλt.1 Here, λ is interpreted as
the largest global Lyapunov exponent and is taken to represent the average rate
of divergence of neighboring trajectories issuing forth from points very nearby
x (0). If λ > 0, then the growth in uncertainty is exponential (if λ < 0, there
is exponential convergence of neighboring trajectories). In general, such growth
cannot go on forever. If the system is bounded in space and in momentum, there
will be limits as to how far nearby trajectories can diverge from one another.

In most all philosophy literature and much physics literature, sensitive depen-
dence as parameterized by global Lyapunov exponents is taken to be a distinguish-
ing mark of chaotic dynamics. That is to say, exponential growth in the separation
of neighboring trajectories characterized by λ is taken to be a property of a par-
ticular kind of dynamics that can only exist in nonlinear systems and models.
However, there are problems with this folklore for defining sensitive dependence
(and, hence, characterizing chaos and complexity using Lyapunov exponents).

One problem is that the definition of global Lyapunov exponents involves the in-
finite time limit. Strictly speaking, λ only characterizes growth in uncertainties as
t increases without bounds, not for any finite time. At best, this would imply that
sensitive dependence characterized by a global Lyapunov exponent can only hold
for the large time limit. And this would further imply that chaotic phenomenon
can only arise in this limit, contrary to what we take to be our best evidence.
Furthermore, neither our models nor physical systems persist for infinite time, but
an infinitely long time is required to verify the presumed exponential divergence
of trajectories issuing from infinitesimally close points in state space.

The standard physicist’s assumption that an infinite-time limit can be used to
effectively represent some large but finite elapsed time will not do in the context of
nonlinear dynamics either. When the finite-time Lyapunov exponents are calcu-
lated, they do not usually lead to on-average exponential growth as characterized
by the global Lyapunov exponents (e.g., [Smith, et al., 1999]). This is because
the propagator — an operator evolving the uncertainty in some ball of points in
state space forward in time — varies from point to point in state space for any
finite times. The propagator is a function of the position x in state space and only
approaches a constant in the infinite time limit. So local finite-time Lyapunov
exponents vary from point to point in state space (whereas global Lyapunov ex-

1Technically, this kind of measure is taken to be valid in an appropriate state space for “almost
all” points in the region around x (0) except a set of measure zero.
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ponents do not). Therefore, trajectories diverge and converge from each other
at various rates as they evolve in time, so that the uncertainty usually does not
vary uniformly in the chaotic region of state space [Smith, et al., 1999; Smith,
2000]. In contrast, global Lyapunov exponents are on-average global measures of
uncertainty growth and imply that uncertainties grow uniformly (for λ > 0). Such
uniform growth rarely occurs outside a few simple mathematical models (e.g., the
baker’s map).

For instance, the Lorenz, Moore-Spiegel, Rössler, Henon and Ikeda attractors
all possess regions dominated by decreasing uncertainties in time, where uncer-
tainties associated with different trajectories issuing forth from some small ball in
state space shrink for the amount of time trajectories remain within such regions
(e.g., [Smith, et al., 1999, 2870-9; Ziehmann, et al., 2000, 273-83]). What this
means is that on-average exponential growth in uncertainties is not guaranteed for
chaotic dynamics. Linear stability analysis indicates when nonlinearities can be
expected to dominate the dynamics. And local finite-time Lyapunov exponents
can indicate regions on an attractor where these nonlinearities will cause all un-
certainties to decrease — cause trajectories to converge rather than diverge — so
long as trajectories remain in those regions.

To summarize this first problem, the folklore that trajectories issuing forth from
neighboring points in some ball in state space are guaranteed to diverge on-average
exponentially in a chaotic region of state space is false in any sense other than for
infinitesimal uncertainties in the infinite time limit.

The second problem with our folklore is that there simply is no implication
that finite uncertainties will exhibit an on-average growth rate characterized by
any Lyapunov exponents, local or global. As pointed out above, the linearized
dynamics used to derive global Lyapunov exponents presupposes infinitesimal un-
certainties. But when uncertainties are finite, linearized dynamics involving in-
finitesimals does not appropriately characterize the growth of finite uncertainties
aside from telling us when nonlinearities should be expected to be important (this
latter information is extremely useful however). Infinitesimal uncertainties can
never become finite in finite time except through super-exponential growth. And
even if infinitesimal uncertainties became finite after a finite time, that would pre-
suppose the dynamics is unconfined; however, the interesting features of nonlinear
dynamics usually take place in subregions of state space (e.g., on particular en-
ergy surfaces or in regions where attractors exist). Presupposing an unconfined
dynamics, then, would be inconsistent with the features we are typically trying to
capture.

One can ask whether the on-average exponential growth rate characterized by
global Lyapunov exponents can ever be attributed legitimately to diverging tra-
jectories if their separation is no longer infinitesimal. Examining simple models
like the baker’s map might seem to indicate yes. However, answering this question
requires some care for more complicated systems like the Lorenz or Moore-Spiegel
attractors. It can turn out to be the case that the rate of divergence in the finite
separation between two nearby trajectories in a chaotic region changes character
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numerous times over the course of their winding around in state space, sometimes
faster, sometimes slower than that calculated from global Lyapunov exponents,
sometimes contracting, sometimes diverging [Smith, et al., 1999; [Ziehmann, et
al., 2000]). In the long run, will some of these trajectories effectively diverge as if
there was on-average exponential growth in uncertainties as characterized by global
Lyapunov exponents? It is conjectured that the set of initial points in the state
space exhibiting this behavior is a set of measure zero. This means that although
there are an infinite number of points exhibiting this behavior, this set represents
zero percent of the number of points composing the attractor. The details of the
kinds of divergence (convergence) uncertainties undergo depend crucially on the
detailed structure of the dynamics (i.e., it is determined point-by-point by local
growth and convergence of finite uncertainties and not by any Lyapunov expo-
nents).

In practice, however, all finite uncertainties saturate at the diameter of the
attractor. The uncertainty reaches some maximum amount of spreading after a
finite time and is not well quantified by measures derived from global Lyapunov
exponents (e.g., [Lorenz, 1965]). So the folklore — that on-average exponential
divergence of trajectories characterizes chaotic dynamics and complexity — is mis-
leading for nonlinear systems. Therefore, drawing an inference from the presence
of positive global Lyapunov exponents to the existence of on-average exponentially
diverging trajectories for a dynamical system is shaky at best.

2.5 Complexity measures

Although several formal definitions of complexity have been proposed for charac-
terizing random, chaotic and other forms of complex behavior, there is no con-
sensus on which is the best definition, nor do these different definitions agree in
picking out the same categories of behavior [Grassberger, 1989; Wackerbauer, et
al., 1994; Badii and Politi, 1997]. There is some evidence to suggest that different
measures are useful for characterizing interesting behaviors of different systems
for different purposes [Wackerbauer, et al., 1994]. Perhaps this is not too sur-
prising as it can be argued that complexity is just the kind of feature requiring
a complex suite of tools and measures [Badii and Politi, 1997]. However, most of
these complexity measures provide no intuitive access to the issues of emergence
and causation at work in complex systems (some dynamical measures applicable
in particular circumstances are exceptions). This is because most measures of
complexity are formalized in terms of probabilities with no explicit reference to
physical system variables (again, dynamical measures are an exception). Physical
variables are implicitly involved in probabilistic measures because such variables
are required to define the state space over which probability measures are defined.

Often it is more informative to characterize complex systems phenomenologi-
cally. Some of the most important features in these characterizations are:

• Many-body systems. Some systems exhibit complex behavior with as few as
three constituents, while others require large numbers of constituents.

1



11 Robert C. Bishop

• Broken symmetry. Various kinds of symmetries, such as homogeneous ar-
rangements in space, may exist before some parameter reaches a critical
value, but not beyond.

• Hierarchy. There are levels or nested structures that may be distinguished,
often requiring different descriptions at the different levels (e.g., large-scale
motions in fluids vs. small-scale fluctuations).

• Irreversibility. Distinguishable hierarchies usually are indicators of or result
from irreversible processes (e.g., diffusion, effusion).

• Relations. System constituents are coupled to each other via some kinds of
relations, so are not mere aggregates like sand grain piles.

• Situatedness. The dynamics of the constituents usually depend upon the
structures in which they are embedded as well as the environment and history
of the system as a whole.

• Integrity. Systems display an organic unity of function which is absent if one
of the constituents or internal structures is absent or if relations among the
structures and constituents is broken.

• Integration. Various forms of structural/functional relations, such as feed-
back loops couple the components contributing crucially to maintaining sys-
tem integrity.

• Intricate behavior. System behavior lies somewhere between simple order
and total disorder such that it is difficult to describe and does not merely
exhibit randomly produced structures.

• Stability. The organization and relational unity of the system is preserved
under small perturbations and adaptive under moderate changes in its envi-
ronment.

• Observer relativity. The complexity of systems depends on how we observe
and describe them. Measures of and judgements about complexity are not
independent of the observer and her choice of measurement apparatus [Grass-
berger, 1989; Crutchfield, 1994].

Such features of complex systems make the development of context-free mea-
sures of complexity unlikely (e.g., aside from observer relativity, the sense of order
invoked in defining behavior as “intricate” depends on context). This can be
illustrated by focusing on the nature of hierarchies in complex systems.
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2.6 Hierarchies and sensitive dependence

The concept of hierarchy in the context of complex systems is of particular note. In
some systems the hierarchy of physical forces and dynamical time scales (e.g., ele-
mentary particles, molecules, crystals) provide ontologically distinguishable levels
of structure. In some cases the lower-level constituents may provide both necessary
and sufficient conditions for the existence and behavior of the higher-level struc-
tures. In complex systems, however, levels of structure are often only epistemically
distinguishable in terms of dynamical time scales. Furthermore, these levels are
coupled to each other in such a way that at least some of the higher-level struc-
tures are not fully determined by, and even influence and constrain, the behavior of
constituents in lower-level structures. That is, the lower-level constituents provide
necessary but not sufficient conditions for the existence and behavior of some of
the higher-level structures (cf. [Bishop, 2005b; 2008a; Bishop and Atmanspacher,
2006]). Moreover, the lower-level constituents may not even provide necessary and
sufficient conditions for their own behavior if the higher-level structures and dy-
namics can constrain or otherwise influence the behavior of lower-level constituents
(e.g., [Bishop, 2008a]). This latter kind of hierarchy is called a control hierarchy
[Pattee, 1973, 75-9; Primas, 1983, 314-23]. Control hierarchies are distinguished
from merely hierarchical structure like sand grain piles through the kinds of control
they exert on lower-level structures and dynamics.

In complex systems, control hierarchies affect lower-level constituents primarily
through constraints. The most important examples of constraints actively change
the rate of reactions or other processes of constituents relative to the unconstrained
situation (e.g., switches and catalysts). These constraints control lower-level con-
stituents without removing all the latter’s configurational degrees of freedom (in
contrast to simple crystals, for instance). These top-down constraints may be ex-
ternal, due to the environment interacting with the system. Or such constraints
may arise internally within the system due to the collective effects of its con-
stituents or some other higher-level structural feature. Typically fundamental
forces like gravity and electromagnetism are not explicitly identified with these
latter internally generated constraints.

The notions of hierarchy and sensitive dependence allow us to formulate a more
qualitative distinction between linear and nonlinear systems (though this charac-
terization can also be made empirically precise — see [Busse, 1978], and [Cross
and Hohenberg, 1993] for examples). Linear systems can be straightforwardly de-
composed into and composed by subsystems (a consequence of the principle of
linear superposition). For a concrete example of the principle of linear superposi-
tion, consider linear (harmonic) vibrations of a string which can be analyzed as a
superposition of normal modes. These normal modes can be treated as uncoupled
individual oscillators. The composition of the string’s vibration out of these com-
ponent vibrations is then analogous to aggregating these parts into a whole (“the
whole is the sum of its parts”). The linear behavior of such systems in these cases
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is sometimes called resultant (in contrast with emergent).2

In nonlinear systems, by contrast, this straightforward idea of composition fails
(a consequence of the failure of the principle of linear superposition). When the
behaviors of the constituents of a system are highly coherent and correlated, the
system cannot be treated even approximately as a collection of uncoupled indi-
vidual parts (“the whole is different than the sum of its parts”). Rather, some
particular global or nonlocal description3 is required taking into account that indi-
vidual constituents cannot be fully characterized without reference to larger-scale
structures of the system. Rayleigh-Bénard convection, for instance, exhibits what
is called generalized rigidity — the individual constituents are so correlated with
all other constituents that no constituent of the system can be changed except by
applying some change to the system as a whole. Such holistic behaviors are often
referred to as emergent (in contrast with resultant).

The tight coupling between constituents in nonlinear systems is related to the
nonseparability of the Hamiltonian. The latter is a function which corresponds
to the total energy of the system and is related to the system’s time evolution.
Roughly, a Hamiltonian is separable if there exists a transformation carrying the
Hamiltonian describing a system of N coupled constituents into N equations each
describing the behavior of an individual system constituent. Otherwise, the Hamil-
tonian is nonseparable and the interactions within the system cannot be decom-
posed into interactions among only the individual components of the system.

In summary, linear systems can be decomposed into their constituent parts and
the behavior of each component can be changed independently of the other com-
ponents (which will then respond to the change introduced). Nonlinear systems
often exhibit collective behavior where an individual system component cannot be
isolated and its behavior changed independently of the rest of the system. Modifi-
cations of behaviors in a nonlinear system may have to take place at some higher
hierarchical level or even at the level of the system as a whole.

2.7 Identity and individuation and a classical measurement problem

The interplay among hierarchical levels in nonlinear systems exhibiting complex-
ity blur distinctions like part-whole, system-environment, constituent-level and so
forth (e.g., cases where hierarchies are only distinguishable by differing time scales
rather than by ontologically distinct features). The mathematical modeling of
physical systems requires us to make distinctions between variables and param-
eters as well as between systems and their environments. However, when linear
superposition is lost, systems can be exquisitely sensitive to the smallest of in-
fluences. A small change in the parameter of a model can result in significantly
different behavior in its time evolution, making the difference between whether

2See [McLaughlin, 1982] for a discussion of the origin and history of the terms ‘resultant’ and
‘emergent.’

3A nonlocal description in nonlinear dynamics denotes a description that necessarily must
refer to wider system and environmental features in addition to local interactions of individual
constituents with one another.
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the system exhibits chaotic behavior or not, for instance. Parameters like the
heat on a system’s surface due to its environment may vary over time leading to
wide variations in the time evolution of the system variables as well as temporal
change in parameters. In such cases, the distinction between model variables and
parameters tends to break down. Similarly, when a nonlinear system exhibits sen-
sitive dependence, even the slightest change in the environment of a system can
have a significant effect on the system’s behavior. In such cases the distinction
between system and environment breaks down. For instance, even the behavior of
an electron at the ‘edge’ of the galaxy would affect a system of billiard balls under-
going continuous collisions [Crutchfield, 1994, p. 239], so the system/environment
distinction becomes more a matter of pragmatically cutting up the ‘system’ and
‘environment’ in ways that are useful for our analysis.

All these subtleties raise questions about identity and individuation for complex
systems. For instance, can a complex system somehow be identified as a distinct
individual from its environment? Can various hierarchies of a complex system be
individuated from each other? Asking these questions presupposes both that a dis-
tinct entity can be identified as well as individuated from other entities. Consider
the so-called butterfly effect. Earth’s weather is a complex system, but its potential
sensitivity to the slightest changes of conditions leave its boundaries ill-defined if
the flapping of a butterfly’s wings in Argentina can cause a tornado in Texas three
weeks later. Is the butterfly’s flapping an internal or external source of wind and
pressure disturbance? Turning towards space, is the magnetosphere surrounding
the earth, which exhibits ‘space weather’ and shields the earth from lethal solar
radiation, a distinct weather system or a qualitatively different extension of the
Earth’s weather system?

Traditional questions about identity and individuation revolve around numer-
ical identity and the criteria for individuation and identity through time. It cer-
tainly seems plausible to consider butterflies, the Earth’s weather and the Earth’s
magnetosphere (with its space weather) as numerically distinct systems (or as nu-
merically distinct subsystems of a larger system). After all, according to Leibniz’s
principle of the identity of indiscernibles, these different “systems” do not share all
their properties. On the other hand, systems are generally composed of subsystems
that differ in properties, so given the lack of absolute boundaries between them,
perhaps the best way to conceive of the butterfly-weather-magnetosphere system
is as one very large complex system. As suggested by the phenomenological prop-
erties of complex systems (sec. 2.5), it is often the case that distinctions between
parts and wholes, hierarchies and the like are pragmatic rather than absolute.
There are further problems with identifying the boundary between the butterfly-
weather-magnetosphere system and its solar system/galactic environment (e.g.,
electromagnetic fields and gravity extend over enormous distances in space).

Classical views of identity and individuation based on Leibniz’s principle might
be of some use in the pragmatic project of identifying complex systems and their
components. However, these would only yield identification and individuation
based on the kinds of questions scientific and other forms of inquiry raise and not
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a kind of objective ontology of distinct things (hence, many of our judgements
about identity and individuation in nonlinear dynamics are epistemic rather than
ontic). Whether the kinds of features described in secs. 2.5 and 2.6 imply there
are no rigid designators, and hence complex systems represent a case of contingent
identity and individuation [Kripke, 1980], is an open question.

Such features also raise questions about our epistemic access to complex sys-
tems. Obviously, some kind of cuts between observer and observed, and between
system and environment have to be made. Along with this difficulty, there are
clear epistemic difficulties confronting the measurement and study of complexity.

One epistemic difficulty is the mismatch between the accuracy or level of fine-
grained access to the dynamics of a complex system and its underlying states and
properties (i.e., the ontic/epistemic distinction). If a particular measurement ap-
paratus only samples some even relatively fine-grained partition of the dynamical
states of a complex system, the result will effectively be a mapping of (perhaps
infinitely) many system states into a much smaller finite number of measurement
apparatus states (e.g., [Crutchfield, 1994]). Such a mapping produces an apparent
complexity — epistemic dynamical states in the measurement apparatus’ projected
space — that may not faithfully represent the complexity (or simplicity) of the
system’s actual dynamics — ontic states.

Another epistemic difficulty is that any measurement apparatus used to as-
certain system states necessarily will introduce a small disturbance into complex
systems that, in turn, will be amplified by sensitive dependence. No matter how
fine-grained the measurement instrument, no matter how tiny the disturbance, this
perturbation will produce an unpredictable influence on the future behavior of the
system under study, resulting in limitations on our knowledge of a complex sys-
tem’s future. Along with the disturbance introduced to the complex system being
measured, there is also a small uncertainty in the measurement apparatus itself.
So the apparatus must also measure both itself and its disturbance perfectly for
a full accounting of the exact state of the complex system being studied. This, in
turn, leads to an infinite regress of measurements measuring measurements requir-
ing the storage of the information of the entire universe’s state within a subsystem
of it, namely the measurement instrument. Because a system exhibiting sensitive
dependence is involved and any measurement uncertainty will be amplified, an
infinite amount of information stored in the measurement apparatus is required,
which is physically impossible.

3 METAPHYSICAL AND EPISTEMOLOGICAL IMPLICATIONS

Complex systems, then, have rich implications for metaphysics and epistemology.
Some of these implications for determinism, prediction, confirmation, causation,
reductionism and emergence, and laws of nature will be surveyed here. I will
begin with some epistemological implications that lead naturally into metaphysical
issues.
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3.1 Predictability and confirmation

So long as the uncertainty in ascertaining the initial state of a nonlinear system re-
mains infinitesimal, there are no serious limitations on our ability to predict future
states of such systems due to rapid growth in uncertainties.4 In this sense, it is
not the presence of a positive global Lyapunov exponent that signals predictability
problems for nonlinear systems per se; rather it is the loss of linear superposition
that leads to possible rapid growth in finite uncertainties in the measurement of
initial states.5 When the disturbance of the initial state due to the act of mea-
surement is included, rapid growth in the total uncertainty in the initial state
places impossibly severe constraints on the predictability of individual trajectories
of systems or their components over various time scales.

The case of forecasting individual trajectories of complex systems receives the
most attention in discussing the implications of chaos and complexity for pre-
dictability. For example, even under the perfect model scenario (sec 2.3), no
matter how many observations of a system we make, we will always be faced
with the problem that there will be a set of trajectories in the model state space
that are indistinguishable from the actual trajectory of the target system [Judd
and Smith, 2001]. Indeed, even for infinite past observations, we cannot elimi-
nate the uncertainty in the epistemic states given some unknown ontic state of
the target system. One important reason for this difficulty is traced back to the
faithful model assumption (sec. 2.3). Suppose the nonlinear model state space (of
a weather forecasting model, say) is a faithful representation of the possibilities
lying in the physical space of the target system (Western European weather, say).
No matter how fine-grained we make our model state space, it will still be the case
that there are many different states of the target system (ontic states) that are
mappable into the same state of the model state space (epistemic states). This
means that there will always be many more target system states than there are
model states.6

The constraints nonlinear systems place on the prediction of individual trajec-
tories do not spell doom for predictability of systems exhibiting complex behavior,
however. There are other statistical or probabilistic forms of prediction that can

4At least this is the case for chaos. In the more general context of nonlinear dynamics, such
as the three-dimensional Navier-Stokes equations, it remains a grand prize challenge question as
to whether there are solutions where infinitesimal uncertainties blowup on finite time scales. If
answered in the affirmative, the loss of linear superposition would pose more potent challenges
to prediction than the much ballyhooed chaos.

5More precisely, the loss of linear superposition is a necessary condition for rapid growth
in uncertainties. Since nonlinear systems do not always exhibit rapid uncertainty growth, the
detailed character of the actual parameter values and nonlinear dynamics has to be investigated
for the conditions governing uncertainty dynamics.

6At least this is the case for any computational models since the equations have to be dis-
cretized. In those cases where we can develop a fully analytical model, in principle we could get
an exact match between the number of possible model states and the number of target system
states. Such analytical models are rare in complexity studies (many of the analytical models are
toy models, like the baker’s map, which, while illustrative of techniques, are misleading when it
comes to metaphysical and ontological conclusions due to their simplicity).
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be effectively applied to such systems (though these also have their limits; see
[Smith, 2003]). For instance, one can apply various techniques for forming ensem-
bles of initial states surrounding the assumed actual state of the target system
and evolve these ensembles forward in time to forecast the behavior of the target
system with specified measures for the uncertainties (e.g., [Judd and Smith, 2001]
and references therein).

Moreover, faithfulness problems for our nonlinear mathematical models are
problematic for standard approaches to confirming such models. We typically
rely on the faithfulness of our mathematical models for our confirmation or ver-
ification of their efficacy in capturing behavior of target systems, but when the
models are nonlinear and the target systems complex, faithfulness turns out to be
inadequate for these standard confirmation practices.

Given a target system to be modeled (e.g., the weather over Western Europe),
and invoking the faithful model assumption, there are two basic approaches to
model confirmation discussed in the philosophical literature on modeling, focusing
on individual trajectories and following a strategy known as piecemeal improve-
ment.7 These piecemeal strategies are also found in the work of scientists modeling
actual-world systems and represent competing approaches vying for government
funding (for an early discussion, see [Thompson, 1957]).

The first basic approach is to focus on successive refinements to the accuracy of
the initial data fed into the model while keeping the model fixed (e.g., [Laymon,
1989, p. 359]). The intuition lying behind this approach is that if a model is faithful
in reproducing the behavior of the target system to a high degree, refining the
precision of the initial data fed to the model will lead to its behavior monotonically
converging to the target system’s behavior. This is to say that as the uncertainty
in the initial data is reduced, a faithful model’s behavior is expected to converge
to the target system’s behavior. Invoking the faithful model assumption, if one
were to plot the trajectory of the target system in an appropriate state space, the
model trajectory in the same state space would monotonically become more like the
system trajectory as the data is refined. The second basic approach is to focus on
successive refinements of the model while keeping the initial data fed into the model
fixed (e.g., [Wimsatt, 1987]). The intuition here is that if a model is faithful in
reproducing the behavior of the target system to a high degree, refining the model
will produce an even better fit with the target system’s behavior given good initial
data. This is to say that if a model is faithful, successive model improvements
will lead to its behavior monotonically converging to the target system’s behavior.
Again, invoking the faithful model assumption, if one were to plot the trajectory
of the target system in an appropriate state space, the model trajectory in the
same state space would monotonically become more like the system trajectory as
the model is made more realistic.

What both of these basic approaches have in common is that piecemeal mono-
tonic convergence of model behavior to target system behavior is a means of con-

7I will ignore bootstrapping approaches as they suffer similar problems, but only complicate
the discussion (e.g., [Koperski, 1998]).
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firming the model. By either improving the quality of the initial data or improving
the quality of the model, the model in question reproduces the target system’s be-
havior monotonically better and yields predictions of the future states of the target
system that show monotonically less deviation with respect to the behavior of the
target system. In this sense, monotonic convergence to the behavior of the target
system is a key mark for whether the model is a good one. If monotonic conver-
gence to the target system behavior is not found by pursuing either of these basic
approaches, then the model is considered to be disconfirmed.

For linear models it is easy to see the intuitive appeal of such piecemeal strate-
gies. After all, for linear systems of equations a small change in the magnitude of
a variable is guaranteed to yield a proportional change in the output of the model.
So by making piecemeal refinements to the initial data or to the linear model only
proportional changes in model output are expected. If the linear model is faithful,
then making small improvements “in the right direction” in either the quality of
the initial data or the model itself can be tracked by improved model performance.
The qualifier “in the right direction,” drawing upon the faithful model assumption,
means that the data quality really is increased or that the model really is more
realistic (i.e., captures more features of the target system in an increasingly ac-
curate way), and is signified by the model’s monotonically improved performance
with respect to the target system.8

However, both of these basic approaches to confirming models encounter seri-
ous difficulties when applied to nonlinear models exhibiting sensitive dependence
[Koperski, 1998; Bishop, 2008b]. In the first instance, successive small refine-
ments in the initial data fed into nonlinear models is not guaranteed to lead to
any convergence between model behavior and target system behavior. Due to
the loss of linear superposition, any small refinements in initial data can lead to
non-proportional changes in model behavior rendering this piecemeal convergence
strategy ineffective as a means for confirming the model. Even a refinement of the
quality of the data “in the right direction” is not guaranteed to lead to the non-
linear model monotonically improving in capturing the target system’s behavior.
The small refinement in data quality may very well lead to the model behavior
diverging away from the system’s behavior.

In the second instance, keeping the data fixed but making successive refinements
in nonlinear models is also not guaranteed to lead to any convergence between
model behavior and target system behavior. Due to the loss of linear superposition,
any small changes in the model, say by adding additional higher-order terms into
the equations, can lead to non-proportional changes in model behavior for the
same initial data, again rendering the convergence strategy ineffective as a means
for confirming the model. Even if a small refinement to the model is made “in the
right direction,” there is no guarantee that the nonlinear model will monotonically
improve in capturing the target system’s behavior. The small refinement in the
model may very well lead to the model behavior diverging away from the system’s

8If one waits for long enough times piecemeal confirmation strategies will also fail for linear
systems if there are imperfections in the data or models.
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behavior.
So whereas for linear models piecemeal strategies might be expected to lead to

better confirmed models (presuming the target system exhibits only stable linear
behavior), no such expectation is justified for nonlinear models exhibiting sensitive
dependence deployed in the characterization of nonlinear target systems. Even for
a faithful nonlinear model, the smallest changes in either the initial data or the
model itself may result in non-proportional changes in model output, an output
that is not guaranteed to “move in the right direction” even if the small changes
are made “in the right direction.”9

Sticking with the individual trajectory approach, one might consider alterna-
tives to these piecemeal confirmation strategies. One possibility is to turn to a
Bayesian framework for confirmation, but similar problems arise here for nonlinear
models exhibiting sensitive dependence. Given that there are no perfect models
in the model class to which we would apply a Bayesian scheme and given the fact
that imperfect models will fail to reproduce or predict target system behavior over
time scales that may be long or short compared to our interests, there again is
no guarantee that some kind of systematic improvement can be achieved for our
nonlinear models.10 Another approach is to seek trajectories issuing forth from
the set of initial conditions in the model space — presumably the actual state of
the target system has been mapped into this set — that areis consistent with all
observations of the target system over the time period of interest. Given a faithful
model, choose an initial condition consistent with the observational uncertainty
that then yields a model trajectory passing within the observational uncertainty
of the desired future observations. Models can then be judged as better or worse
depending on the length of their shadowing times. Finding such trajectories that
consistently shadow target system observations for longer and longer times under
changes in either the initial data or the models themselves may be quite difficult,
however. Furthermore, it is possible to construct models that can shadow any set
of observations without those models having any physical correspondence to the
target system (e.g., [Smith, 1997, p. 224-225]).

It seems that probabilistic models utilizing ensembles of trajectories or ensem-
bles of probability distributions would allow for a clearer sense of confirmation.
Yet, similar problems can crop up here as well. Ensemble forecasting models can
give unique, but incorrect indications of the target system’s future behavior or
such models can give no unique indications of expected future behavior. And
even when an ensemble model gives a relatively unique indication that tracks with
the outcomes of a target system over a shorter time scale, its indications may di-
verge significantly from that time point forward.11 Again, we face difficulties with
formulating a systematic confirmation scheme.

9Of course, this lack of guarantee of monotonic improvement also raises questions about what
“in the right direction” means, but I will ignore these difficulties here.

10Here I leave aside the problem that having no perfect model in our model class renders most
Bayesian schemes ill-defined.

11See [Smith, 1997, pp. 236-237]) for an illuminating example of this in the context of weather
forecasting.
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While the above difficulties with determining when a nonlinear model is good
causes problems for philosophers’ desires to produce a systematic theory of confir-
mation for all models, this situation does not impede physicists and others from
finding ways to improve their models and make determinations about how good
their imperfect models are. However, it is also the case that these model builders
do not follow some universal scheme for improving or confirming their models, but
use a variety of techniques (e.g., [Smith, 1997]).

Last, but not least, there are ramifications here for the use of nonlinear mod-
els in the development and assessment of public policy. Policy formation and
assessment often utilizes model forecasts and if the models and systems lying at
the core of our policy deliberations are nonlinear, then policy assessment will be
affected by the same lack of guarantee as model confirmation due to the loss of
linear superposition. Suppose government officials are using a nonlinear model in
the formulation of economic policies designed to keep GDP ever increasing while
minimizing unemployment (among achieving other socio-economic goals). While
it is true that there will be some uncertainty generated by running the model sev-
eral times over slightly different data sets and parameter settings, assume policies
taking these uncertainties into account to some degree can be fashioned. Once
in place, the policies need assessment regarding their effectiveness and potential
adverse effects, but such assessment will not be merely a function of looking at
monthly or quarterly reports on GDP and employment data to see if targets are
being met. The nonlinear economic model driving the policy decisions will need
to be rerun to check if trends are indeed moving in the right direction and are
on the right course with respect to the earlier forecasts. But, of course, the data
fed into the model have now changed and there is no guarantee that the model
will produce a forecast with this new data that fits well with the old forecasts
used to craft the original policies. How, then, are policy makers to make reliable
assessments of policies? The same problem that small changes in data or model
in nonlinear contexts are not guaranteed to yield proportionate model outputs or
monotonically improved model performance also plagues policy assessment using
nonlinear models.

3.2 Determinism

Intuitively, one might think that if a system is deterministic, then it surely must be
predictable, but the relationship between determinism and predictability is much
too subtle to support this intuition [Bishop, 2003]. Predictability of systems has
much to do with epistemic states while determinism has to do with ontic states.
And while the characteristics of ontic states should have some implications for
the character and behavior of epistemic states, it is difficult at best to draw any
conclusions about the ontic states of a system based on our access to epistemic
states. This is a fundamental reason why the often discussed unpredictability of
chaotic and complex systems by itself does not undermine the determinism of the
underlying ontic states of nonlinear systems in classical mechanics. So arguments
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like Karl Popper’s [1950] to the effect that a breakdown in predictability implies a
breakdown in determinism trade on confusing epistemic conclusions for ontic ones.

The trend since the Scientific Revolution has been to support the belief in meta-
physical determinism by appealing to the determinism of theories and models from
physics, though this strategy is not without its subtleties and surprises [Bishop,
2006]. A standard way of characterizing a mathematical model as deterministic is
through the property unique evolution:

Unique Evolution: A given state of a model is always followed (pre-
ceded) by the same history of state transitions.

The basic idea is that every time one returns the mathematical model to the
same initial state (or any state in the history of state transitions), it will undergo
the same history of transitions from state to state and likewise for the target
system if the faithful model assumption holds. In other words the evolution will
be unique given a specification of initial and boundary conditions.12 For example
the equations of motion for a frictionless pendulum will produce the same solution
for the motion as long as the same initial velocity and initial position are chosen.

It is not uncommon to find arguments in the literature that purport to show
that chaos and complexity tell against determinism. For example, in several books
John Polkinghorne has pushed the claim that the kind of sensitive dependence ex-
hibited by complex dynamical systems should lead us to view even the determin-
istically rigid world of classical mechanics as ontologically indeterministic. Here is
an instance of this line of reasoning:

The apparently deterministic proves to be intrinsically unpredictable.
It is suggested that the natural interpretation of this exquisite sen-
sitivity is to treat it, not merely as an epistemological barrier, but
as an indication of the ontological openness of the world of complex
dynamical systems [Polkinghorne, 1989, p. 43].

He attempts to make this line of thought plausible through demanding a close link
between epistemology and ontology under a critical realist reading of the two.

If we remain at the level of dynamical systems — i.e., mathematics — then
clearly there is a serious problem with this line of reasoning. Namely, the mathe-
matical equations giving rise to the exquisite sensitivity and attendant predictabil-
ity problems are deterministic in exactly the sense of unique evolution described
above. So our ontic description in terms of these equations push in precisely the
opposite direction that Polkinghorne pursues. Although it is true that apparent
indeterminism can be generated if the state space one uses to analyze chaotic be-
havior is coarse-grained, this produces only an epistemic form of indeterminism.
The underlying equations are still fully deterministic.

12Note that as formulated, unique evolution expresses state transitions in both directions
(future and past). It can easily be recast to allow for unidirectional state transitions (future only
or past only) if desired.
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Instead, to raise questions about the determinism of real-world systems, one
has to pursue the nature of these complex models and their implications as well
as examine their presumed connection with target systems via the faithful model
assumption. As pointed out in sec. 2 above, the mathematical modeling of actual-
world systems requires us to make distinctions between variables and parameters
as well as between systems and their boundaries. As we saw, these distinctions
become problematic in the context of complex systems, where linear superposition
is lost and such systems can be exquisitely sensitive to the smallest of influences.
Such features raise questions about our epistemic access to systems and mod-
els in the investigation of complex systems, but they also raise questions about
making sense of the supposed determinism of target systems. As an example,
consider applying a deterministic mathematical model to forecasting the weather
over Western Europe, where the identity and individuation of that system is ques-
tionable (sec. 2.7). What all do we have to include in this model to be able to
make some reasonable pronouncement about whether Western Europe’s weather
is deterministic or not? Do we need only include a particular fluid mass over this
particular continent, or over the earth’s surface or that plus the stratosphere and
magnetosphere, or . . . . And do we have to include every butterfly flapping its
wings to get an identifiable target system?

There is a further problem in our application of deterministic models to actual-
world complex systems and our belief that those systems are deterministic. Al-
though the faithful model assumption appears fairly unproblematic in some simple
contexts, if the system in question is nonlinear the faithful model assumption raises
serious difficulties for inferring the determinism of the target system from the de-
terministic character of the model. For example, there is the problem that there
will always be many more target system states than there are model states as
described above (sec. 3.1).

More fundamentally, there is the problem of the mapping between the model
and the target system itself. Even for a faithful model, we do not have a guarantee
that the mapping between the model and the target system is one-to-one as we
customarily assume. The mapping may actually be a many-to-one relation (e.g.,
several different nonlinear faithful models of the same target system as is the case
with competing weather forecasting and climate prediction models) or a many-
to-many relationship. For many classical mechanics problems — namely, where
linear models or force functions are used in Newton’s second law — the mapping
between model and target system appears to be straightforwardly one-to-one with
plausible empirical support. By contrast, in nonlinear contexts where one might
be constructing a model from a data set generated by observing a system, there are
potentially many nonlinear models that can be constructed, and each model may
be as empirically adequate to the system behavior as any other. For the inference
from the deterministic character of our mathematical model to the deterministic
character of the target system to hold appears to require either a one-to-one rela-
tionship between a deterministic model and target system or that the entire model
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class in a many-to-one relation be deterministic.13

A different approach attempting to call the ontological determinism of the
macroscopic world into question via complexity is the research on far-from-
equilibrium systems by Ilya Prigogine and his Brussels-Austin Group [Antoniou
and Prigogine, 1993; Petrosky and Prigogine, 1996; 1997; Prigogine, 1997].

Conventional physics describes physical systems using particle trajectories as
a fundamental explanatory element of its models. If a system of particles is dis-
tributed uniformly in position in a region of space, the system is said to be in
thermodynamic equilibrium (e.g. cream uniformly distributed throughout a cup
of coffee). In contrast, a system is far-from-equilibrium (nonequilibrium) if the
particles are arranged so that highly ordered structures appear (e.g. a cube of
ice floating in tea). This means that the behavior of a model is derivable from
the trajectories of the particles composing the model. The equations governing
the motion of these particles are reversible with respect to time (they can be run
backwards and forwards like a film). When there are too many particles involved
to make these types of calculations feasible (as in gases or liquids), coarse-grained
averaging procedures are used to develop a statistical picture of how the system
behaves rather than focusing on the behavior of individual particles.

In contrast the Brussels-Austin approach views these systems in terms of mod-
els whose fundamental explanatory elements are distributions; that is to say, the
arrangements of the particles are the fundamental explanatory elements and not
the individual particles and trajectories.14 The equations governing the behavior
of these distributions are generally irreversible with respect to time. Moreover, fo-
cusing exclusively on distribution functions opens the possibility that macroscopic
nonequilibrium models are irreducibly indeterministic, an indeterminism that has
nothing to do with epistemic access to the system. If true, this would mean that
probabilities are as much an ontologically fundamental element of the macroscopic
world as they are of the microscopic.

One important insight of the Brussels-Austin Group shift away from trajectories
to distributions as fundamental elements is that explanation also shifts from a local
context (set of particle trajectories) to a global context (distribution of the entire
set of particles). A system acting as a whole may produce collective effects that
are not reducible to a summation of the trajectories and subelements composing
the system [Petrosky and Prigogine, 1997; Bishop, 2004]. However, there are
serious open questions about this approach, for instance what could be the physical
source of such indeterminism15 and what is the appropriate interpretation of the
probabilistic distributions? Thus, the Brussels-Austin approach remains quite

13That this last requirement is nontrivial is exemplified in that different modeling teams will
often submit proposals for the same project, where some propose deterministic models and others
propose nondeterministic models.

14This does not imply, as some have erroneously thought (e.g., [Bricmont, 1995, 165-6]) that
the Brussels-Austin Group argued there was no such thing as individual particle trajectories in
such complex systems.

15One possibility is that this kind of indeterminism is ontologically emergent from the under-
lying dynamics (see sec 3.4 below).
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speculative.
Another possible implication of complexity for determinism lies in the sensitiv-

ity of such systems to the smallest of disturbances. Some have argued that the
sensitive dependence found in macroscopic chaotic systems opens such systems to
the influence of quantum effects (e.g., [Hobbs, 1991; Kellert, 1993]). The line of
thinking in these sensitive dependence arguments is that nonlinear chaotic systems
whose initial states can be localized to a small patch of state space, because of
quantum fluctuations, will have future states that can only be localized within a
much larger patch of state space. For example, two isomorphic nonlinear systems
of classical mechanics exhibiting sensitive dependence, whose initial states differ
only in the quantum fluctuations within their initial conditions, will have future
states that will differ significantly at later times. Since quantum mechanics sets a
lower bound on the size of the patch of initial conditions, unique evolution must
fail for such nonlinear chaotic systems.

This provocative line of argument is beset with a number of subtleties and
difficulties, however. For example, there are difficult issues regarding the appro-
priate version of quantum mechanics (e.g., von Neumann, Bohmian or decoherence
theories), the nature of quantum measurement theory (collapse vs. non-collapse
theories), and the selection of the initial state characterizing the system that must
be resolved before one can say clearly whether or not unique evolution is violated
[Bishop, 2008c]. Just because quantum effects might influence macroscopic sys-
tems exhibiting sensitive dependence does not guarantee that determinism fails
for such systems. Whether quantum interactions with such systems contribute
indeterministically to the outcomes of these systems depends on the currently un-
decidable question of indeterminism in quantum mechanics, a resolution of the
measurement problem, and a decision as to where to place the boundary between
system and measurement.

Moreover, the possible constraints of nonlinear classical mechanics systems on
the amplification of quantum effects must be considered on a case-by-case basis.
For instance, damping due to friction can place constraints on how quickly ampli-
fication of quantum effects can take place before they are completely washed out
[Bishop, 2008c]. And one has to investigate the local finite-time dynamics for each
system because these may not yield any on-average growth in uncertainties (sec
2.4).

3.3 Causation

The analysis of determinism in complex systems is complicated by the fact that
there are additional forms of causation arising in such systems that must be taken
into account. Indeed, understanding whether a process is deterministic or not
often depends upon understanding the underlying causal mechanism(s). There is
no consensus account of what causes are; rather, there is a set of accounts — e.g.
counterfactual, logical, probabilistic, process, regularity, structural (e.g., see [Sosa
and Tooley, 1993]) — that each have strengths and weaknesses (and, perhaps, like
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definitions of complexity, have different applicability for different purposes). These
accounts of causation require rethinking in the face of the richness of nonlinear
dynamics. As indicated in section 2 above, chaos, complexity and self-organization
are behaviors where complex wholes play important roles in constraining their
parts. Such inter-level causation more generally has received little philosophical
attention relative to bottom-up efficient modes of causation.

Immanuel Kant was one of the first to recognize the peculiarities of what we now
call self-organization in living systems. He classifies such phenomena as intrinsic
physical ends [Kant, 1980, p. 18] because they are in some sense both cause and
effect of themselves. For instance, according to Kant, a tree “in the genus, now
as effect, now as cause, continually generated from itself and likewise generating
itself, . . . preserves itself generically” [Kant, 1980, p. 18]. An entity is an intrinsic
physical end if “its parts, both as to their existence and form, are only possible
by their relation to the whole” [Kant, 1980, p. 20]. Self-organizing systems,
particularly organisms, are produced by, and in turn, produce the whole. Each
part — such as they are distinguishable — exists in virtue of the activity of the
other parts and the whole. Furthermore, each part exists for the sake of the other
parts as well as the whole. “Only under those conditions and upon those terms
can such a product be organized and self-organized being, and as such be called a
physical end” [Kant, 1980, p. 22].

In Kant’s view self-organization “has nothing analogous to any causality known
to us” [Kant, 1980, p. 23] because the dominant concrete conception of causation
available to him was that of external forces acting on systems generally through
contact as exemplified in the model systems of Newtonian mechanics. Given his
recognition that self-organizing systems required some kind of time-irreversible
processes and that Newtonian dynamics was fully time-reversible, he relegated
our lack of understanding how self-organization comes about to a limitation of
reason [Kant, 1980, pp. 22-4]. Counterfactual, logical and regularity analyses of
causation fare no better at penetrating this lack of understanding. While pro-
cess and structural accounts each appear to have some pieces of the puzzle for
understanding self-organization, process theories lack an adequate account of the
structural constraints of wholes on parts, while structural theories lack an adequate
account of processes.

Causation in complex systems has been given very little sustained analysis in
the philosophy literature relative to causation in general ([Juarrero, 1999] is a no-
table exception). Probably this lack of attention is largely due to a widely shared
assumption that causal analysis in complex systems is no different in kind than in
typical metaphysics literature (save it is obviously more complex than the usual ex-
amples on which philosophers tend to focus). However, complexity raises difficult
questions for thinking about causation when nonlinear inter-level relationships,
rapid amplification of the smallest perturbations and so forth are present. For
example, how are we to identify the causes at work in systems exhibiting sensitive
dependence? What to do if quantum effects possibly can play causal roles in such
systems (sec 3.2) or electrons dancing about in a distant galaxy possibly can play
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a causal role in such systems here on Earth (sec 2.7)? How far down do we have
to go to identify all the causes at work in a complex macroscopic system (e.g., to
butterfly wing flaps, to the atomic level or beyond)? Or how far do we have to
extend a complex system to capture all of its causes (e.g., weather near the earth’s
surface or must we include the stratosphere, troposphere, magnetosphere, solar
system, etc.)? There is a real problem here of specifying just what the causes in
complex systems are aside from the trivial answer: everything! Finding principled
ways to draw the boundary around the “crucial” or “dominant” causes at work
in complex systems is difficult, to say the least because one of the lessons that
nonlinear dynamics teaches us is that “small” causes are not insignificant (e.g.,
[Bishop, 2008a; 2008c]).

Hierarchies also raise questions about causation in complex systems (secs. 2.6
and 2.7). Typical metaphysical analyses consider all causation as “bottom up,”
where the system components are the only causal actors and systems as a whole
have causal power in virtue of the causal powers of their constituents (e.g., [Kim,
2007]). But when control hierarchies act to limit or govern the causal influence of
system components, is this not “top down?” Instances where lower levels provide
necessary but insufficient conditions for the total behavior of wholes are rather
routine in complexity systems. Moreover, when higher levels in a hierarchy and
wholes act to constrain or direct the causal powers of constituents, even lower-level
constituents in and of themselves turn out to not have necessary and sufficient
conditions for governing all of their behavior (sec. 3.4). To repeat some key ideas
of secs. 2.6 and 2.7 in slightly different language, in complex systems the formation
of control hierarchies often comes about when a new form of dynamics arises that
exhibits downward constraint on system constituents and is self-sustaining (e.g.,
[Hooker, 2004, pp. 449-477; Bishop, 2008c]). This kind of dynamical top-down
constraint has a character more resembling Aristotle’s notion of formal cause than
efficient cause and has been largely unanalyzed by analytic philosophers (who tend
to focus on logical and formal relationships among efficient causes in bottom-up
constructions than on dynamics and dynamical relations).

3.4 Reduction and emergence

The issues of identity and individuation as well as causation in complex systems
lead naturally to a discussion of reduction and emergence in complex systems. In
rough outline, reductionist lore maintains that properties and behavior of systems
as a whole are completely determined by the states and properties of their parts
(ontic claim) or are explainable in terms of the states and properties of their
parts (epistemic claim). Defenders of emergence deny one or both of these claims.
The property of linear superposition plays an interesting role in the concepts of
resultant and emergent forces in such systems. However, the loss of superposition
and the possibilities for holism and constraining causation lead to the need to
consider an alternative to the received views.

For instance, the lack of necessary and sufficient conditions for the behavior of
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lower-level constituents in complex systems directly challenges reductive atomism
(e.g., control hierarchies). One of the core principles of atomistic physicalism as
identified by Robert van Gulick is that “The only law-like regularities needed for
the determination of macro features by micro features are those that govern the
interactions of those micro features in all contexts, systemic or otherwise” [van
Gulick, 2001, p. 18]. However, in complex systems control hierarchies and other
inter-level causal relations are crucial to determining the behavior of system con-
stituents. The behavior of constituents in such systems is conditioned by contexts
in which the constituents are situated.

Recall the characterization of nonlinear systems and the linear superposition
principle (sec. 2.2) and the relationship of the failure of that principle to hier-
archical and large-scale structure behavior (sec. 2.6). When linear superposition
holds, a system can be decomposed into its constituent parts and the behavior
of each component is independent of the other components. This is the typical
way in which philosophical proponents of reductionists tend to conceive of all sys-
tems. In contrast, when linear superposition breaks down, as it does for complex
systems, such systems often exhibit behaviors reflecting the fact that individual
system components are not independent of each other. Moreover, the behavior of
individual system components are not even independent of the wholes (and var-
ious hierarchies in between). Hierarchies and wholes act to enable or constrain
various possibilities for component behavior relative to what would be possible for
the components if the hierarchies and wholes were absent.16

The interplay between parts and wholes in complex systems leads to the self-
organization observed in such systems. Their sensitive dependence on the smallest
of changes at the component level is partly guided by the inter-level causal relations
in such systems (e.g., determining the characteristic features of convecting cells
in Rayleigh-Bénard convection due to initial perturbations and instabilities in the
system). This kind of behavior may be fruitfully captured by the concept of
contextual emergence (see [Bishop, 2005b; Bishop and Atmanspacher, 2006]):

The properties and behaviors of a system at a particular level (in-
cluding its laws) offer necessary but not sufficient conditions for the
properties and behaviors at a higher level.

The reference to necessary conditions at the lower level means that properties and
behaviors of components at the higher level of a system may imply the properties
and behaviors of components at the lower level. However, the converse is not true
as the lower-level properties and behaviors do not offer sufficient conditions for
the properties and behaviors of higher-level components. Contingent conditions
specifying the context for the transition from the lower to the higher level of prop-
erties and behaviors are required to provide such sufficient conditions. In complex

16[Juarrero, 1999; Silberstein and McGeever, 1999; Bishop, 2004; Bishop and Atmanspacher,
2006; Ellis, 2006; Bishop, 2008a]. In the language of Lagrangian mechanics the failure of the
laws and conditions at the lower level to serve as both necessary and sufficient conditions for
higher-level behavior is due to the failure of the constraints to be holonomic (see [Symon, 1971],
sec 9.4, for a discussion of holonomicity).
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systems, such contingent contexts are not given by the lower-level properties and
behaviors alone. Moreover, the conditions for specifying a candidate reduction
are not well defined until an appropriate contingent context is properly specified
[Hooker, 2004, pp. 467-468].

In this sense, complex systems seem to validate intuitions many emergentists
have that some form of holism plays an important causal role in complex sys-
tems that is missed by reductionist analyses. However, care is needed with typical
emergentist slogans such as “The whole cannot be predicted from its parts,” or
“The whole cannot be explained from its parts” when it comes to contextual emer-
gence like that exemplified in complex systems. Relevant information about the
lower-level properties and behaviors of constituents plus the specification of an
appropriate contingent context allows for the (in principle) prediction or explana-
tion of higher-level properties and behaviors in many cases (e.g. [Primas, 1998;
Bishop, 2005b; Bishop and Atmanspacher, 2006]). So complexity holds surprises
for both proponents of reductionism and emergence.

3.5 Laws

While most metaphysicians focus on the “upward” flow of efficient causation from
system components to system behavior as a whole, the possibilities for inter-level
causal relationships in the dynamics of complex systems like convecting fluids
present plausible examples of a “downward” flow of causation constraining the
behavior of system components. Such behaviors clearly raise questions about the
nature of laws in complex systems.

A very popular conception of science is that its goal is to discover natural laws
often given form as universal statements in scientific theories. Philosophically
there have been two main traditions for analyzing the nature of these laws. One
tradition is the necessitarian tradition, where laws represent genuine necessities
governing the regularities and patterns we find in reality. The other tradition is
the regularity tradition, where laws are descriptive of regularities and patterns
but no genuine underlying necessities exist. Although these two traditions involve
differing relationships to the various theories of causation on offer, a very important
class of laws in scientific theories have been causal laws, which govern or specify
the history of state transitions a system will make given some initial starting
conditions. Such causal laws often play important roles in philosophical analyses
of science as well as metaphysical accounts of reality, however features like inter-
level causation challenge an exclusive focus on this role.

For example, exclusive focus on causal laws might lead one to worry that fun-
damental laws of physics — viewed as causal laws — are being violated if the
lowest-level constituents of systems (e.g., elementary particles, molecules) plus
the fundamental laws are not jointly necessary and sufficient to fully determine
the behaviors of these constituents (and, thereby, determine the behaviors of all
higher-level constituents). Much is going on in this philosophical worry. Part of
what is presupposed in this worry is an understanding of natural laws as being
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universal in the sense of being context free (as in the characterization of atomistic
physicalism given above in sec. 3.4). Another presupposition in this worry is that
the laws governing actual-world systems are only or primarily of the causal vari-
ety. Although perhaps under analyzed, science also includes structuring laws that
govern or structure the range of possibilities, but do not necessarily specify which
of those possibilities are actualized.

Rather than giving in to the worry, perhaps the lesson of nonlinear dynamics
and complexity is that we should reconceive the primary role laws play in scientific
theories. After all, scientific theories are notorious for eschewing language of the
efficient causal type with which philosophers are enamored. What fundamental
laws primarily do is carry out structuring functions, where the relevant space of
possibilities is determined for the behaviors of the constituents guided by them,
but such laws do not fully determine which of these possibilities in the allowable
space are actualized. That can only be fully determined by concrete contexts into
which the laws are coming to expression (which may involve higher-level causal
and/or structuring laws). For instance, Newton’s law of gravity determines the
space of possible motions for an apple falling from a tree, but the concrete context
where I reach out my hand and catch the apple actualizes a particular possibility
among all those allowed even though the particular context is not included in the
law of gravity.

The point, here, is very similar to that for contextual emergence above (sec. 3.4):
while fundamental laws establish necessary conditions for the possible behaviors
of objects, contingent contexts must be added in to establish jointly necessary and
sufficient conditions for actual behaviors. If the fundamental laws play primarily
structuring roles in nature, then concrete contexts are as important as the laws.17

Empirically, this is consonant with the intricate and delicate behavior of complex
systems. We should, then, resist the tendency to either appeal to only fundamental
causal laws in our explanations or to pit causal laws against structuring laws in
competing explanations. Sound explanations of complex systems are likely to
involve both appeals to causal mechanisms and ordering/constraining structure
via the interrelationships among the lower-level and higher-level dynamics18

If fundamental laws primarily structure the spaces of possibility they establish
but do not fully determine the outcomes within this space, worries about violations
of fundamental laws fade away. Hierarchies and wholes in complex systems act to
constrain or direct the possibilities made available by lower-level laws as opposed to
somehow violating those laws. Since such laws are part of the necessary conditions
for the behavior of higher-level constituents, such laws cannot be violated by the
behavior of higher-level constituents. Indeed, it is possible that the structuring
function played by control hierarchies and wholes in complex systems are the
result of some as yet unknown nonlinear dynamical laws, which may be causal

17Similar lessons about laws can be gleaned from continuum and statistical mechanics even in
cases where systems are not exhibiting complexity.

18See [Chemero and Silberstein, 2008, sec. 4; Bishop, 2008b, sec. 5.2] for some discussion as
to how these two levels might be brought together fruitfully in the service of explanation.
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or structural as well as emergent with respect to the contexts where nonlinear
interactions are dominant. Even so, fundamental laws still would be necessary for
structuring the possibility space for emergent nonlinear laws, though particular
features of contexts might be required for particular nonlinear laws to arise.

But complexity raises more questions for laws than the relative roles of struc-
tural vs. causal laws. It also raises questions about how we are to conceive laws
that require us to fix appropriate boundary conditions for their corresponding
equations to be well posed.19 For example, the fluid equations governing Rayleigh-
Bernard convection require the imposition of a constant temperature along the
bottom plate of a container holding fluid so that a temperature difference can
be established. In an idealized mathematical model of this situation, there is a
principled choice to make for the boundary. However, when these same fluid equa-
tions are applied to model atmospheric weather, all of the boundary problems
mentioned above in sec. 2 arise, where there is no longer any obvious choice for
where to place the cut between weather system and boundary. Operationally it
is fine that we can make pragmatic choices that give us well-posed equations to
solve on a computer, but the foundational questions of the status of the laws in
question and the determination of their boundaries remains unanswered. Perhaps
such laws as philosophers have typically conceived them have no instantiations for
complex systems because these systems lie outside the laws’ domain of applicabil-
ity, given the lack of an ontologically distinguishable boundary. Yet, we still have
stable patterns where the dynamics governs the outcomes even if our philosophical
analyses of laws come up short in characterizing the dynamics.20

Moreover, we typically connect laws with physical systems via models, which
means that the faithful model assumption (sec. 2.3) is being invoked. Faithful
yet imperfect models leave open questions about the applicability of the laws to
phenomena exhibiting complexity. Even if we take the faithful model assumption
to its extreme limit — the perfect model scenario — we run into problems since
there are too many states indistinguishable from the actual state of the system
yielding empirically indistinguishable trajectories in the model state space [Judd
and Smith, 2001]. Add into the mix that the mapping between our nonlinear
dynamical models could be many-to-one or many-to-many, and our philosophical
judgements become difficult about the roles scientific laws play in the correspond-
ing actual-world systems and which of these laws are fundamental and which are
emergent (if any).

Empirically, it is hard to be sanguine about the necessitarian tradition on laws
which, in turn, puts pressure on realist views of natural laws. On the other hand,
the regularity tradition does not rest too comfortably either. The difficulties non-
linear dynamical systems raise for the notion of faithful models lead to analogous

19For an insightful survey of the delicate nature of the relationship between laws and boundary
conditions, see [Wilson, 1990].

20Similar questions can be raised about the status of scaling laws and laws involving universality
and order parameters, which are ubiquitous in literature on complex systems. The subtleties of
such systems warrant care in being too quick to conclude that these laws are “merely epistemic”
because we “lack access” to the underlying causal mechanisms at work in such systems.
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worries about the role regularities play in actual-world systems, and about whether
the regularities in these systems are fundamental and/or emergent. The regulari-
ties of complex systems are there, to be sure, and engage intense scientific study,
but our current philosophical understanding of laws appears to be inadequate.

4 DISCUSSION

This brief survey of complexity and its implications suggests that there are chal-
lenges to our philosophical and scientific lore about the world. Nonlinear dynam-
ics and the loss of linear superposition shed different light than is typically found
in philosophical literature on identity and individuation, predictability, confirma-
tion, determinism, causation, reduction and emergence, and natural laws, some
of the bread and butter topics of metaphysics, epistemology and philosophy of
science. There is much remaining to be explored about how nonlinear dynamics
and complexity can challenge and enrich our understanding of metaphysics and
epistemology as well as science and its practices.

On the one hand, nonlinear modeling and insights from complexity studies are
in widespread use in the sciences (and increasingly in public policy). There is
a genuine sense that nonlinear models have led to tremendous advances (e.g., in
chemical studies, drug development, weather prediction, plasma physics). On the
other hand, extracting firm results from such modeling is nontrivial, given that
these results are context-dependent, qualified by some very strong idealizations
and difficult to confirm. This is not the kind of picture of science presented in
our textbooks and a lot of the philosophical literature. Moreover, the upshot of
complex systems modeling for our pictures of the world, whether deterministic,
causal or reductionistic, is challenging and nuanced.

Many philosophers and scientists have reflected on science and its methods
with a set of assumptions that underestimate the complexity of science itself.
Our assumption that faithful models are relatively unproblematic and relatively
straightforward methodologically seemed to serve fine in scientific inquiry before
the advent and explosion of nonlinear modeling and complexity studies. However,
the latter have pushed our philosophical and scientific understanding to their limits
as described above.

One of the important challenges to our thinking about science and its methods
that complex system make abundantly clear is clarifying our understanding of the
strengths and weaknesses of nonlinear modeling. Roughly, on the strength side,
there is greatly increased power to model actual-world phenomena that defies our
analytical capabilities. In domains like fluid flow, weather forecasting and fusion
reactor modeling, tuning our models to the best available empirical data sets
has proved quite useful for refining our models. On the limitation side, there is
the challenge of understanding how to extract useful, reliable information from
imperfect and difficult-to-confirm models that do have some faithfulness to the
target systems of interest. For instance, even when we have tuned our nonlinear
models to the best data sets, there is still a great deal of inadequacy in those data
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sets (no data set is ever perfect) that is translated into our models; this is over and
above the inadequacy inherent in our faithful models. At the end of the process
there still remains a great deal of uncertainty in the results of our models. To
what extent do modelers and end users who receive model outputs as deliverables
understand the limitations of these models? To what extent do they understand
the uncertainties inherent in the modeling results? What strategies can modelers
use to extract trustworthy information in the midst of such model inadequacy
and uncertainty? What changes do end users, such as public policy officials, need
to make so that their reasoning reflects the limitations and uncertainty of the
modeling science on which they are relying? These latter questions are some
of the most difficult and pressing philosophical and methodological issues raised
by complex systems and their models. Efforts by philosophers, scientists, public
policy experts and others to answer such questions would be effort well spent.

Any insights gleaned in exploring these questions will no doubt further our
thinking in metaphysics and epistemology about determinism, causation, reduc-
tion/emergence, natural laws and confirmation in the context of complex systems.
One example that is relevant to the latter issues is raised by the possibilities for
there to be a many-to-one relationship between different nonlinear models and a
single target system: Are such mathematical models simulating the target system
or merely mimicking its behavior? To be simulating a system suggests that there
is some actual correspondence between the model and the target system it is de-
signed to capture. In contrast, if a model is merely mimicking the behavior of a
target system, there is no guarantee that the model has any genuine correspon-
dence to the actual properties of the target system. The model merely imitates
behavior. This question becomes particularly important for modern techniques of
building nonlinear dynamical models from large time series data sets (e.g., [Smith,
1992]), for example the sunspot record or the daily closing value of a particular
stock for some specific period of time. In such cases, after performing some tests
on the data set, modelers set about their work constructing mathematical models
that reproduce the time series as their output. When multiple such models, each
conceptually and mathematically different, reproduce the target system behavior
with roughly equal accuracy (and inadequacy!), are such models simulating target
systems, or only mimicking them? Here, all the questions about understanding
model limitations and uncertainties, strategies for extracting useful information
and how to reason about public policy or other implications based on model out-
put are raised. In addition, for the philosophers further questions about what
these models are telling us about our world and our access to that world are also
raised with their attendant implications for metaphysics and epistemology.

The metaphysical and epistemological implications of complex systems is very
rich, indeed.
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